Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning

نویسندگان

  • Maja Adamska
  • Sandie M. Degnan
  • Kathryn M. Green
  • Marcin Adamski
  • Alina Craigie
  • Claire Larroux
  • Bernard M. Degnan
چکیده

BACKGROUND The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera), their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-beta signalling ligands during the embryonic development of a sponge. METHODOLOGY/PRINCIPAL FINDINGS Using resources generated in the recent sponge Amphimedon queenslandica (Demospongiae) genome project, we have recovered genes encoding Wnt and TGF-beta signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-beta expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-beta expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-beta are expressed radially along the anterior-posterior axis. CONCLUSIONS/SIGNIFICANCE We infer from the expression of Wnt and TGF-beta in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-beta along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways contributed to establishing axial polarity in the very first metazoans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WNT/β-Catenin Signalling and Epithelial Patterning in the Homoscleromorph Sponge Oscarella

Sponges branch basally in the metazoan phylogenetic tree and are thus well positioned to provide insights into the evolution of mechanisms controlling animal development, likely to remain active in adult sponges. Of the four sponge clades, the Homoscleromorpha are of particular interest as they alone show the "true" epithelial organization seen in other metazoan phyla (the Eumetazoa). We have e...

متن کامل

Dynamic and Widespread lncRNA Expression in a Sponge and the Origin of Animal Complexity

Long noncoding RNAs (lncRNAs) are important developmental regulators in bilaterian animals. A correlation has been claimed between the lncRNA repertoire expansion and morphological complexity in vertebrate evolution. However, this claim has not been tested by examining morphologically simple animals. Here, we undertake a systematic investigation of lncRNAs in the demosponge Amphimedon queenslan...

متن کامل

The Characterization of Sponge NLRs Provides Insight into the Origin and Evolution of This Innate Immune Gene Family in Animals

The "Nucleotide-binding domain and Leucine-rich Repeat" (NLR) genes are a family of intracellular pattern recognition receptors (PRR) that are a critical component of the metazoan innate immune system, involved in both defense against pathogenic microorganisms and in beneficial interactions with symbionts. To investigate the origin and evolution of the NLR gene family, we characterized the full...

متن کامل

Origin of the Animal Circadian Clock: Diurnal and Light-Entrained Gene Expression in the Sponge Amphimedon queenslandica

The circadian clock is a molecular network that coordinates organismal behavior and physiology with daily environmental changes in the day-night cycle. In eumetazoans (bilaterians+ cnidarians), this network appears to be largely conserved, yet different from other known eukaryotic circadian networks. To determine if the eumetazoan circadian network has an older origin, we ask here whether ortho...

متن کامل

Genesis and expansion of metazoan transcription factor gene classes.

We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007